Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Tris(1-ethyl-3-methylimidazolium) hexachlorolanthanate

Kazuhiko Matsumoto, ${ }^{\text {a }}$ Tetsuya Tsuda, ${ }^{\text {a }}$ Toshiyuki Nohira, ${ }^{\text {a }}$ Rika Hagiwara, ${ }^{\text {a }}$ Y Yasuhiko Ito ${ }^{a}$ and Osamu Tamada ${ }^{\text {b }}$

${ }^{\text {a }}$ Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and ${ }^{\text {b }}$ Graduate School of Human and Environmental Study, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Correspondence e-mail: hagiwara@energy.kyoto-u.ac.jp

Received 26 June 2001
Accepted 30 November 2001
Online 20 February 2002
In the title complex, $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{LaCl}_{6}\right]$, centrosymmetric octahedral hexachlorolanthanate anions are located at the corners and face-centers of the monoclinic unit cell. The ring H atoms of the cations interact with the Cl atoms of the anions via hydrogen bonding, and bifurcation of the hydrogen bonding is observed. Cation-cation interactions via hydrogen bonding between the ring H atoms and π-electrons of aromatic rings are also observed as in other imidazolium salts.

Comment

Various imidazolium salts are known as room-temperature ionic liquids and some exhibit interesting characteristics with respect to practical applications in many fields of chemistry and electrochemistry (Welton, 1999; Hagiwara \& Ito, 2000). Studies of the interactions between the ions are important for the understanding of the physical and chemical properties of ionic liquids. The structural analyses of solid imidazolium salts provide important information regarding the ionic interactions. The electrochemical behavior of the lanthanum ion in the LaCl_{3}-saturated 1-ethyl-3-methylimidazolium chlorideAlCl_{3} ionic liquid system has been reported recently (Tsuda et al., 2000, 2001). In the present study, the solid imidazolium salt tris(1-ethyl-3-methylimidazolium) hexachlorolanthanate, $(\mathrm{EMI})_{3}\left[\mathrm{LaCl}_{6}\right]$, (I), has been prepared and its structure determined by X-ray single-crystal diffraction.

(I)

The title structure is built up from EMI cations and slightly distorted LaCl_{6} octahedra. The structure contains three crystallographically independent EMI cations (Figs. 1 and 2). Typical $\mathrm{C}-\mathrm{C}(\mathrm{N})$ bond distances are observed for the imidazolium cations (Dymek et al., 1989; Ortwerth et al., 1998). The average bond distances of $\mathrm{N} 1-\mathrm{C} 2, \mathrm{~N} 11-\mathrm{C} 12$ and $\mathrm{N} 21-\mathrm{C} 22$
(1.306 \AA), and $\mathrm{C} 2-\mathrm{N} 3, \mathrm{C} 12-\mathrm{N} 13$ and $\mathrm{C} 22-\mathrm{N} 23(1.309 \AA$) are shorter than those of $\mathrm{N} 3-\mathrm{C} 4, \mathrm{~N} 13-\mathrm{C} 14$ and $\mathrm{N} 23-\mathrm{C} 24$ ($1.357 \AA$), C4-C5, C14-C15 and C24-C25 (1.331 \AA), and $\mathrm{C} 5-\mathrm{N} 1, \mathrm{C} 15-\mathrm{N} 11$ and $\mathrm{C} 25-\mathrm{N} 21(1.365 \AA)$. The β carbon of each ethyl substituent is above or below the plane of the fivemembered ring, with torsion angles of -117.8 (9) ${ }^{\circ}$ for $\mathrm{C} 2-$ $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7,-94.8(6)^{\circ}$ for $\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 17$ and 92.2 (9) ${ }^{\circ}$ for $\mathrm{C} 22-\mathrm{N} 21-\mathrm{C} 16-\mathrm{C} 17 . \mathrm{LaCl}_{6}$ shows the expected octahedral geometry, with $\mathrm{La}-\mathrm{Cl}$ bond distances in the range $2.76-2.81 \AA$ and cis- $\mathrm{Cl}-\mathrm{La}-\mathrm{Cl}$ angular distortions of less than $3^{\circ} . \mathrm{LaCl}_{6}$ anions are located at the corners and facecenters of the monoclinic unit cell.

One would expect the cation-anion interactions in EMI salts to be dominated by the hydrogen bonding between the ring H atoms and anions, since the ring H atoms have more positive charge than the H atoms of the side-chain alkyl groups. The strength of hydrogen bonding depends on the basicity of the hydrogen-bond acceptor. Strong hydrogenbond acceptors, like atomic halide ions, can form strong hydrogen bonds, while larger molecular anions do not (AbdulSada et al., 1986; Dymek et al., 1989; Fuller et al., 1994; Ortwerth et al., 1998). Table 1 shows the hydrogen-bonding geometry in (I). All Cl atoms except Cl 1 are involved in short contacts with ring H atoms. Cl 1 does not interact with ring H atoms; however, it is at a short distance from one of the H atoms (H8b) of the methyl group of a cation. Thus, hydrogen bonding is observed between some H atoms attached on the

Figure 1
The molecular structure of the $\left[\mathrm{LaCl}_{6}\right]^{3-}$ anion and EMI^{+}cations around La1 in (I). The dashed lines denote the hydrogen bonding. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small circles of arbitrary radii. [Symmetry code: (i) $1-x,-y, 1-z$.]

Figure 2
The molecular structure of the $\left[\mathrm{LaCl}_{6}\right]^{3-}$ anion and EMI^{+}cation around La 2 in (I). The dashed lines denote the hydrogen bonding. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as small circles of arbitrary radii. [Symmetry code: (i) $-x,-y,-z$.]
side-chain alkyl groups and the Cl atoms in LaCl_{6}; for example, 2.86 for $\mathrm{Cl} 1-\mathrm{H} 8 b, 2.86$ for $\mathrm{Cl} 2\left(x,-y-\frac{1}{2}, z-\frac{1}{2}\right) \cdots$ $\mathrm{H} 28 c, 2.86$ for $\mathrm{Cl} 4\left(-x, y+\frac{1}{2},-z+\frac{3}{2}\right) \cdots \mathrm{H} 8 a$ and $2.86 \AA$ for $\mathrm{Cl} 6(-x,-y, 1-z) \cdots \mathrm{H} 27 b$ are short enough to allow the formation of a bond stronger than a van der Waals interaction. Bifurcation of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ bonds is observed, namely, one ring H atom (H12) interacts with two Cl atoms $\left[\mathrm{Cl} 4\left(x,-y-\frac{1}{2}, z-\frac{1}{2}\right)\right.$ and $\left.\mathrm{Cl} 5\left(-x, y-\frac{1}{2},-z+\frac{3}{2}\right)\right]$ of LaCl_{6}.

In some EMI salts, a cation interacts with the neighboring cations via hydrogen bonds between the ring H atom and π-electron cloud. As a result of the compensation by Coulombic repulsion between the cations, the bonding is attenuated to the van der Waals interaction. A similar cationcation interaction exists locally in the unit cell of the title compound, although the peculiar cation stacking through the crystal observed in other EMI salts (Wilkes \& Zaworotko, 1992; Fuller et al., 1994) is not observed. H24($\left.x,-y-\frac{1}{2}, z+\frac{1}{2}\right)$ interacts with the π electrons on the imidazolium ring; the distance between the H atom and the ring is approximately $3.2 \AA$. Two imidazolium rings are not parallel to each other and the nearest distance between C and N atoms belonging to different rings [C24(x,-y- $\left.\frac{1}{2}, z+\frac{1}{2}\right)$ and N 13] takes the sum of the van der Waals distances of C and $\mathrm{N}[3.371$ (7) A $]$.

Experimental

Compound (I) was synthesized by recrystallization in an LaCl_{3} saturated basic $\mathrm{EMICl}-\mathrm{AlCl}_{3}$ ionic liquid ($40 \mathrm{~mol} \% \mathrm{AlCl}_{3}$). LaCl_{3} dissolves well in the basic system (Tsuda et al., 2000). According to the results of thermogravimetric analysis and differential thermal analysis, compound (I) decomposes at around 600 K without melting. Rigid crystals of (I) were obtained from the basic system supersaturated by LaCl_{3}, and some grew into large blocks with a 10 mm edge length. A suitable crystal was mounted and sealed in a quartz capillary.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{LaCl}_{6}\right]$
$M_{r}=685.11$
Monoclinic, $P 2_{1} / c$
$a=15.566$ (10) A
$b=12.664$ (10) \AA
$c=15.046(2) \AA$
$\beta=90.46$ (6) ${ }^{\circ}$
$V=2965.89(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.534 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8989 \\
& \quad \text { reflections } \\
& \theta=1.3-30.5^{\circ} \\
& \mu=2.00 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.25 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection
Nonius KappaCCD diffractometer CCD scans
Absorption correction: multi-scan
(SORTAV; Blessing (1995)
$T_{\text {min }}=0.630, T_{\text {max }}=0.671$
71635 measured reflections
6823 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.086$
$S=1.38$
6823 reflections
283 parameters
H-atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.71	$3.557(8)$	152
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 4^{\mathrm{iii}}$	0.93	2.79	$3.614(6)$	148
$\mathrm{C} 8-\mathrm{H} 8 a \cdots \mathrm{Cl} 4^{\mathrm{iii}}$	0.96	2.86	$3.766(9)$	157
$\mathrm{C} 8-\mathrm{H} 8 b \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.96	2.86	$3.584(8)$	133
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.93	2.78	$3.612(4)$	150
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cl} 5^{\mathrm{i}}$	0.93	2.83	$3.393(4)$	120
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cl} 2$	0.93	2.80	$3.636(5)$	150
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cl} 5$	0.93	2.83	$3.632(5)$	146
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl} 3$	0.93	2.79	$3.479(6)$	132
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.93	2.88	$3.693(5)$	147
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cl} 6^{\mathrm{v}}$	0.93	2.82	$3.565(6)$	138
$\mathrm{C} 27-\mathrm{H} 27 b \cdots \mathrm{Cl}^{\mathrm{v}}$	0.96	2.86	$3.686(8)$	145
$\mathrm{C} 28-\mathrm{H} 28 c \cdots \mathrm{Cl}^{\mathrm{i}}$	0.96	2.86	$3.729(7)$	151

Symmetry codes: (i) $x,-\frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x,-y, 1-z$; (iii) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (v) $-x,-y, 1-z$.

The space group was determined from the systematic extinctions. All the H atoms were refined using appropriate riding models, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ for $\mathrm{CH}_{2}, 0.96 \AA$ for CH_{3} and $0.93 \AA$ for aromatic groups. The displacement parameters of H atoms were fixed at $1.2 U_{\text {eq }}$ of their parent atoms ($1.5 U_{\text {eq }}$ for methyl groups).

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

The authors thank the Ministry of Education, Culture, Sports, Science and Technology for financial support by Grant-in-Aid for Scientific Research.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1036). Services for accessing these data are described at the back of the journal.

References

Abdul-Sala, A. K., Greenway, A. M., Hitchcock, P. B., Mohammed, T. J., Seddon, K. R. \& Zora, J. A. (1986). J. Chem. Soc. Chem. Commun. pp. 17531754.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R.H. (1995). Acta Cryst. A51, 33-38.
Dymek, C. J. Jr, Grossie, D. A., Fratini, A. V. \& Adams, W. W. (1989). J. Mol. Struct. 213, 25-34.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fuller, J., Carlin, R. T., De Long, H. C. \& Haworth, D. (1994). J. Chem. Soc. Chem. Commun. pp. 299-300.
Hagiwara, R. \& Ito, Y. (2000). J. Fluorine Chem. 105, 221-227.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Ortwerth, M. F., Wyzlic, M. J. \& Baughman, R. G. (1998). Acta Cryst. C54, 1594-1596.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tsuda, T., Nohira, T., Hagiwara, R. \& Ito, Y. (2000). Progress in Molten Salt Chemistry 1. Proceedings of the EUCHEM 2000 Conference on Molten Salts, pp. 543-547. Amsterdam: Elsevier Science.
Tsuda, T., Nohira, T. \& Ito, Y. (2001). Electrochim. Acta, 46, 1891-1897.
Welton, T. (1999). Chem. Rev. 99, 2071-2083.
Wilkes, J. S. \& Zaworotko, M. J. (1992). J. Chem. Soc. Chem. Commun. pp. 965-967.

